2021-4-10 | 教育教學論文
數學建模就是建立數學模型的過程,即用數學的符號和語言,對實際問題進行抽象假設,分析內在規律,將其表述為數學模型,并通過計算結果來解釋實際問題,同時也接受實際的檢驗。全國大學生數學建模競賽自1992年我國首次舉辦以來,經過20年的發展,目前已成為全國高校規模最大的基礎性學科競賽,也成為世界上規模最大的數學建模競賽。
同時,其他地區性和專業性的數學建模競賽也蓬勃地開展起來,其中影響較為廣泛的有研究生數學建模競賽、美國大學生數學建模國際競賽等。為了提高大學生運用數學工具分析解決實際問題的能力,借助于數學建模競賽的推動,目前,數學建模課程幾乎在我國所有的高等院校都在開設,成為我國高校發展速度最快的課程之一。西南科技大學作為傳統的工科院校,工科數學課程教學在不同的工科專業課程教學中具有基礎性的作用,所以,把數學建模的思想和學校工科數學課程教學結合在一起,既能促進學生對數學及應用的進一步認識,又更能培養學生的實踐創新能力。
一、數學建模思想的作用與意義
(一)數學建模對工科數學課程教學改革的促進傳統的工科數學教學在課程內容的設置上主要分三個部分:高等數學,概率統計和線性代數。這三門課程都存在著重經典,輕現代;重連續,輕離散;重分析,輕數值計算;重運算技巧,輕數學思想方法;重理論,輕應用的傾向。各個不同數學課程之間又自成體系,過分強調各自的系統性和完整性,忽視了在實際工程中的應用,不利于培養學生運用數學知識解決實際問題的能力,造成學生所學不知所用,并且影響到后續專業課程的學習。作為教師,面臨著學生提出的“學數學到底有什么用?”這類問題。為了解決學生普遍的疑惑,首先可在工科數學課程教學中滲透數學建模思想。許多新的數學定義在引出的時候都會提供或多或少的引例,比如極限中的化圓為方問題、導數的瞬時速度問題以及定積分中的曲邊梯形面積問題等等。在對基本數學概念進行講述時,一方面讓學生從具體的引例去掌握抽象的數學定義,另一方面更要學生理解數學建模思想的應用。
在課后進一步提供與之相關的生物、社會、經濟等方面的數學模型,不但加大了課程的信息量,豐富了教學內容,而且拓寬了學生的思路,激發學生學習數學的積極性,初步培養學生數學建模的思想。其次,開設數學建模的必修和選修課程,以數學建模競賽為導向,系統地向學生介紹數學建模方法,引導學生將數學建模思想和自己的專業課程相結合,組織豐富的數學建模和專業課程交叉結合實踐活動,將其所學的數學基礎知識進行整合,增強學生對數學的應用意識及能力,為其專業課程的學習打下堅實的數學基礎。
(二)數學建模對工科大學生素質教育的推動
目前,數學建模課程作為全校的素質選修課程對全校學生開設,為數學建模思想在不同學科、不同專業中的滲透提供了更好的條件。由于新技術、新工藝的不斷涌現,提出了許多需要用數學方法解決的新問題。高速、大型計算機的飛速發展,使得過去即便有了數學模型也無法求解的課題(如大型水壩的應力計算,中長期天氣預報等)迎刃而解。無論是傳統的機械、材料、生物等工科專業,還是通訊、航天、微電子、自動化等高新技術,或者將高新技術用于傳統工業去創造新工藝、開發新產品,數學不再僅僅作為一門科學,它成為許多技術的基礎,而且直接走向了技術的前臺。技術經濟來臨,對工科大學生來說,既是機會,更是挑戰。而學生素質能力的拓展,數學建模成為一個不可或缺的重要手段。數學建模課程內容的設置,由于面對的是全校學生,所以涉及面多為非專業性的社會、經濟中的數學應用問題,看似數學建模對專業教育培養目標并沒有起到很大的促進作用,其實不然。一方面,在課程教學中,針對具體的建模案例,補充一些優化理論、微分方程及差分方程理論、模糊評價方法和決策分析等相關的數學知識,可擴展學生的數學知識面。同時,數學建模的實踐活動,可增強學生數學意識,提高數學應用等各方面的綜合能力。因此當學生具備對問題一定的分析、抽象、簡化能力之后,加之其豐富的聯想能力,大膽使用數學建模中的類比法,不難將所學數學建模方法應用于本專業問題的分析與數學建模之中。
二、數學建模與工科數學相結合的探討
(一)數學建模思想與高等數學課程的結合
長期以來,高等數學在高校工科專業的教學計劃中是一門重要的基礎理論必修課,主要內容是函數極限、連續、微積分、向量代數與空間解析幾何、級數理論、微分方程等方面的基本概念,基本理論及基本運算技能,其目的是使學生對數學的思想和方法產生更深刻的認識并使學生的抽象思維與邏輯推理能力、分析問題、解決問題得到培養、鍛煉和提高。
傳統的高等數學教學主要是講解定義、定理證明、公式推導和大量的計算方法與技巧等,在課堂中,填鴨式教學法仍占主要地位,在表達方法上一直采用“粉筆+PPT”的講授法,教師在課堂上把所有知識系統而又完整地講授給學生,教學內容還是比較單調,這種教學方式會使學生越來越覺得數學枯燥無味;再加上目前的學生深受應試教育的影響,學習主動性還不夠,缺乏應用數學知識解決實際問題的意識和能力。教師如果能隨時隨處將數學建模思想滲透在講課內容中,使學生對概念產生的歷史背景有所了解,讓學生在學習數學時,體會到知識的整體性、綜合性及應用性,這樣學生才能通過理解把新知識消化吸收并熟練運用。比如,在學習函數連續性的時候,可以介紹“椅子能否在不平的地面上放穩”這一簡單的模型,讓學生體會到抽象的介值定理在生活中的小應用;在學習利用函數形態描繪函數圖形的時候,適當引入Matlab軟件的介紹以及繪圖功能,讓學生掌握復雜的二維及三維圖形的描繪;在微分方程一章,淡化物理模型,從人口計劃生育的基本國策出發,提出人口增長的Malthus模型及Logistic模型,從數學角度闡述控制人口增長的必要性。
(二)數學建模思想與概率統計課程的結合
概率及統計學的應用在現實生活中更是隨處可見,課程一般在高校大學二年級開設。在概率統計課堂教學中融入數學建模思想方法有利于培養應用型人才,特別是對管理類和經濟類的人才,有利于提高低年級學生運用隨機方法分析解決身邊實際問題的能力。嚴格的說,概率論的理論推導比較繁瑣,學生相關的理論基礎也不具備,因此基本理論的講授不過分強調全面性,講清楚條件與結論,留給學生更多的問題讓他們自己思考,討論,培養自己利用概率統計建模解決問題的良好習慣。在每一個單元的教學中,可以適當安排幾個例子讓學生思考。如在隨機事件與概率部分,從簡單的摸球問題和硬幣正反面問題,延伸到生活處處可見的彩票銷售;在學習概率分布的時候,重點列舉正態分布和泊松分布在現實生活中的常見例子,并提出簡單的排隊論問題讓學生進一步討論;在隨機變量的數字特征部分,可以學習報童的收益問題以及航空公司的預定票策略。