應(yīng)用數(shù)學(xué)建模側(cè)重于與工程和環(huán)境過程、制造和工業(yè)系統(tǒng)的數(shù)學(xué)建模相關(guān)的研究。研究活動的一個重要新興領(lǐng)域涉及多物理過程,特別鼓勵這方面的貢獻(xiàn)。這一有影響的出版物涵蓋了廣泛的主題,包括傳熱、流體力學(xué)、化學(xué)和化學(xué)制品以及運(yùn)輸現(xiàn)象;金屬的固體力學(xué)和力學(xué);電磁鐵和mhd;可靠性建模和系統(tǒng)優(yōu)化;有限體積、有限元素和邊界元素程序;建立庫存、工業(yè)、制造和物流系統(tǒng)模型,以便作出可行的決策;土木工程系統(tǒng)和結(jié)構(gòu);礦產(chǎn)和能源;與cad和cae相關(guān)的軟件工程問題;材料和冶金工程。應(yīng)用數(shù)學(xué)建模主要關(guān)注通過新穎的數(shù)學(xué)建模、新穎的應(yīng)用或這些方法的結(jié)合來提高對現(xiàn)實(shí)問題的洞察力的論文。采用現(xiàn)有數(shù)值技術(shù)的論文在解決實(shí)際問題時必須具有足夠的新穎性。通常不考慮決策中的模糊邏輯或純金融數(shù)學(xué)的論文。對分?jǐn)?shù)階微分方程、分岔和數(shù)值方法的研究需要包括實(shí)例。人口動態(tài)必須解決現(xiàn)實(shí)的情況。在物流和商業(yè)建模領(lǐng)域的論文應(yīng)該證明有意義的管理洞察力。不考慮沒有實(shí)際應(yīng)用的提交。
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.
SCI熱門推薦期刊 >
SCI常見問題 >
職稱論文常見問題 >
EI常見問題 >