本雜志旨在為紐結理論的新發展,特別是在紐結理論與數學和自然科學的其他方面之間建立聯系的發展提供一個論壇。由于學科的性質,我們的立場是跨學科的。繩結理論作為一門核心的數學學科,受到許多形式的推廣(虛擬繩結和連桿、高維繩結、其它流形中的繩結和連桿、非球面繩結、類似于打結的遞歸系統)。結點生活在一個更廣泛的數學框架中(三維和高維流形分類、統計力學和量子理論、量子群、高斯碼組合學、組合學、算法和計算復雜性、拓撲和代數結構的范疇理論和范疇化、代數拓撲、拓撲量子場論)。將發表的論文包括:節點與連桿理論的新研究及其應用相關領域的新研究;教程和復習論文。通過這本雜志,我們希望能很好地服務于結理論和拓撲相關領域的研究人員,研究人員在他們的工作中使用結理論,科學家有興趣了解當前在結理論及其分支的工作。
This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).Papers that will be published include:new research in the theory of knots and links, and their applications;new research in related fields;tutorial and review papers.With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.
SCI熱門推薦期刊 >
SCI常見問題 >
職稱論文常見問題 >
EI常見問題 >