計算機和流體是多學科的?!傲黧w”一詞的解釋最廣泛。只要計算機技術在相關研究或設計方法中起著重要作用,那么水動力學和空氣動力學、高速和物理氣體動力學、湍流和流動穩定性、多相流、流變學、摩擦學和流體結構相互作用都是重要的。在大多數工程和科學領域都有應用:機械、民用、化學、航空、醫學、地球物理、核和海洋學。這些問題包括空氣、海洋和陸地車輛運動和流動物理、能量轉換和動力、化學反應器和運輸過程、海洋和大氣效應和污染、生物醫學、噪音和聲學以及磁流體動力學等。與流體流動計算有關的數值方法的發展、流動物理和流體相互作用的計算分析以及對流動系統和設計的新應用都與計算機和流體有關?;鶞式鉀Q方案也在期刊的范圍內,將在專門的期刊上發表。關于驗證和數字準確性的政策聲明:計算機和流體將拒絕所有未按要求的準確性評估報告結果的手稿。以下項目應得到充分的數據和/或參考資料的討論和支持:物理模型和流量配置說明:控制方程、邊界條件和幾何結構以及控制無量綱數(雷諾數、馬赫數……)都應以讀者可以重現結果的方式清楚說明。數值方法說明:應明確描述,包括邊界條件和初始條件。應給出準確度的正式順序。對于空間平滑解,方法應至少具有二階空間精確性,局部一階精確方法適用于具有不連續性(例如沖擊)的流動。代碼驗證活動說明:應驗證數值方案和算法的數值實現,例如使用分析解決方案、制造解決方案或高精度基準解決方案。所提出的結果在空間、時間和迭代上的收斂性應在手稿中得到解決。必須證明網格收斂性,考慮到應評估與自由度數有關的若干計算收斂性。對于繪制殘差演化的穩態結果,應證明迭代收斂性。考慮到時間步長的若干值,應證明時間收斂性?;鶞式鉀Q方案和專用特殊問題:基準解是計算流體力學(CFD)中評估新數值方法精度和驗證實際應用的重要工具。由于基準解決方案沒有對流動物理帶來新的見解,也沒有對應于新的數值方法的呈現,因此它們將在專門的??习l表。作者應該充分地提交它們。重要的是,提出基準解決方案的文章應滿足以下所有強制性要求:文章必須由至少兩個不同機構的作者提交。應詳細說明流量配置,并用通常的無量綱參數(雷諾數、馬赫數、迎角等)進行參數化。本文應給出與至少一個配置參數(雷諾數、馬赫數等)的參數探索相關的結果。所選的變化范圍應至少包括流動拓撲或流動動力學中的一個分叉(例如流動分離的外觀、附加特征頻率的上升…)和控制參數的相關臨界值必須仔細確定。強調新提出的基準解決方案應顯著提高對數值方法能力的信心。因此,對于已經存在的文本案例的簡單變化將不被接受。應至少使用三種不同的數值方法,并在所有圖表上進行比較。商業CFD工具和廣泛使用的開源解算器中可用的數值選項的簡單比較將不被接受。如果手稿中的某些測試案例已經存在一些結果,則應給出相關的詳盡參考列表,并使用相關數據進行比較?;鶞式鉀Q方案應不存在任何物理建模不確定性。因此,不應使用湍流模型或其他半經驗物理模型。應至少考慮四個分辨率級別來評估網格收斂性。對于無網格和隨機的方法,應該提出四個自由度的精化級別。手稿應向讀者提供顯示相關和有用物理量與(i)網格分辨率/自由度數和(i i)選定變化范圍內的流量參數值的表格和圖表。強烈建議作者以文本格式提供完整的數據集,作為補充材料。作者可以自由提出基準解決方案。如果提交的幾篇論文在審查中涉及非常接近的測試案例,作者將被要求集中在一組測試案例上,并重新提交一篇普通的論文。
Computers & Fluids is multidisciplinary. The term 'fluid' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.Applications will be found in most branches of engineering and science: mechanical, civil, chemical, aeronautical, medical, geophysical, nuclear and oceanographic. These will involve problems of air, sea and land vehicle motion and flow physics, energy conversion and power, chemical reactors and transport processes, ocean and atmospheric effects and pollution, biomedicine, noise and acoustics, and magnetohydrodynamics amongst others.The development of numerical methods relevant to fluid flow computations, computational analysis of flow physics and fluid interactions and novel applications to flow systems and to design are pertinent to Computers & Fluids. Benchmark solutions are also within the scope of the journal and will be published in dedicated issues.Policy statement on validation and numerical accuracy:Computers & Fluids will reject all manuscripts that do not report results with the required assessment of accuracy. The following items should be discussed and supported by adequate data and/or references:Statement of the physical model and flow configuration: both the governing equations, boundary conditions and geometry and governing dimensionless numbers (Reynolds number, Mach number...) should be clearly explicated in such a way that readers may reproduce the results.Statement of numerical methods: they should be described in a clear way, including boundary conditions and initial conditions. Formal order of accuracy should be given. Methods should be at least second-order accurate in space for spatially smooth solutions, locally first-order accurate methods being appropriate for flows with discontinuities (e.g. shocks).Statement of code verification activities: numerical implementation of the numerical schemes and algorithms should have been verified, e.g. using analytical solutions, manufactured solutions or highly accurate benchmark solutions.Spatial, temporal and iterative convergence of the presented results should be asessed in the manuscript. Grid convergence must be proved considering several computational convergence with respect to the number of degrees of freedom should be assessed. Iterative convergence should be proved for steady-state results plotting residual evolution. Temporal convergence should be proved considering several values of the time step.Benchmark solutions and dedicated speical issues:Benchmark solutions are important tools in CFD to assess the accuracy of new numerical method and to validate practical implementation. Since benchmark solutions do not bring new insight into flow physics and they do not correspond to presentation of a new numerical method, they will be published in dedicated special issues. Authors should submit them adequately. It is important noting that articles presenting a benchmark solution should fulfill all following mandatory requirements:Article must be submitted by authors from at least two different institutions.The flow configuration should be exhaustively detailed and parameterized by usual dimensionless parameters (Reynolds number, Mach number, angle of attack...). The paper should present results associated to a parametric exploration of at least one configuration parameter (Reynolds, Mach...). The selected range(s) of variation should encompass at lest one bifurcation in flow topology or flow dynamics (e.g. appearance of flow separation, rise of additional characteristic frequencies...) and the associated critical value(s) of the governing parameter(s) must be carefully determined. It is emphasized that new proposed benchmark solutions should significantly increase the confidence into numerical methods capabilities. Therefore, simple variations about already existing text cases will not be accepted.At least three different numerical methods should be used and compared on all figures/tables. Simple comparisons of numerical options available in commercial CFD tools and widely used open source solvers will not be accepted.In the case some results already exist for some test cases presented in the manuscript, a related exhaustive reference list should be given and associated data used for comparision.The benchmark solutions should be free of any physical modelling uncertainty. Therefore, turbulence model or other semi-empirical physical models should not be used.Grid convergence should be assessed considering at least four resolution levels. For gridless and stohastic methods, four refinement levels in terms of number of degrees of freedom should be presented.The manuscript should provide the reader with tables and plots displaying values of relevant and useful physical quantities versus (i) grid resolution/number of degrees of freedom and (ii) flow parameters in the selected range of variation. Authors are also strongly encouraged to provide full data set in text format that will be made available as supplementary materials.Authors are free to propose benchmark solutions. In the case several submitted papers under review deal with the very close test cases, authors will be asked to converge on a set of test cases and to re-submit a common paper.
SCI熱門推薦期刊 >
SCI常見問題 >
職稱論文常見問題 >
EI常見問題 >